• Users Online: 276
  • Print this page
  • Email this page
CASE REPORT
Year : 2020  |  Volume : 38  |  Issue : 2  |  Page : 98-101

A 45-year-old Italian male with p.(Gly1815Ser) FBN1 mutation causing a mild variant of Marfan syndrome: A case study


1 Department of Clinical Sciences and Community Health, University of Milan, IRCCS Ca' Granda Foundation Via San Barnaba 8; UOC Occupational Medicine, Department of Medicine Preventive Services, IRCCS Ca' Granda Foundation Ospedale Maggiore Policlinico, via San Barnaba 8, Milan, Italy
2 Department of Medicine and Surgery, University of Milano-Bicocca, via Cadore 48, Monza, Italy
3 Department of Clinical Sciences and Community Health, University of Milan, IRCCS Ca' Granda Foundation Via San Barnaba 8, Milan, Italy
4 Regional Center of Ehlers-Danlos Syndrome, UOC Occupational Medicine, Department of Medicine Preventive Services, IRCCS Ca' Granda Foundation Ospedale Maggiore Policlinico, via San Barnaba 8, Milan, Italy
5 UOC Occupational Medicine, Department of Medicine Preventive Services, IRCCS Ca' Granda Foundation Ospedale Maggiore Policlinico, via San Barnaba 8, Milan, Italy

Correspondence Address:
Dr. Francesca Cortini
Department of Clinical Sciences and Community Health, University of Milan, Via San Barnaba 8, 20122, Milan
Italy
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/ds.ds_16_19

Rights and Permissions

A 45-year-old Italian male was referred as suspected of having a heritable connective tissue disorders by clinical findings, including joint hyperlaxity and soft, smooth, velvety, and slightly elastic skin. Using a specific custom panel including genes involved in these disorders, next-generation sequencing (NGS) analysis led to the identification of the c. 5443G>A, p.(Gly1815Ser), (rs745680336) variant in fibrillin-1 (FBN1) gene, encoding the FBN1. Mutations in this protein are responsible for different connective tissue disorders, collectively known as type 1 fibrillinopathies, including Marfan syndrome (MFS). Multiple sequencing alignment of human FBN1 protein with various species revealed that the mutation occurred within a highly conserved region of the calcium-binding epidermal growth factor-like domain and affected the protein structure/function, suggesting its pathogenic role. NGS techniques successfully identified the molecular defect in this patient, clinically resembling as MFS, even if a clear genotype–phenotype correlation remains still challenging.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed262    
    Printed10    
    Emailed0    
    PDF Downloaded51    
    Comments [Add]    

Recommend this journal